		تئِئ وزارت آموزش و پرورش اداره كل آموزش و پرور ش استان قم اداره آموزش و پرورش ناحيه／شهر ستان／منطقه درس ：رياضى		
بارم	تعداد 18 سؤل در ¢ صفحه			رديف
فصل اول 》مجموعه هاه－Y نمره				
－／1的	الف）》اعداد طبيعى كوچكتر از صفر « يك مجموعه تهمي است．（درست \square－نادرست \square ） ب）با توجه به نمودار »ون＂مقابل ؛ ＊＊）مجموعه هاى زير را با اعضايش مشخص كنيد． $\mathbf{A}-\mathbf{B}=\{\quad\} \quad(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}=\{\quad\}$ （＊＊＊）با توجه به نمودار ״ون＂در جاى خالى علامت مناسب قرار دهيد．（ E و ؟ ） $\{-\mu\}$ \square \mathbf{C} r \square B ج）در خانواده ای با سه فرزند، چقدر احتمال دارد كه در اين خانواده هر سه فرزند، پپر باشد $\frac{\vee}{\wedge}\left(d \square \quad \frac { \mu } { \wedge } \left(c \square \quad \frac { 1 } { \wedge } \left(b \square \quad \frac{\mu}{\wedge}(a \square\right.\right.\right.$			1
فصل دوم 》عددهاى حقيقى＂－ه／ا／نمره				
－／6	دهيد．	ارت را مشخص كنيد． ■． .	الف）درستى يا نادر ستى هر عبار ＊＊عد ب）نمودار مجموعه	r
－／ 6	$\sqrt{(r-\sqrt{\omega})^{\mu}}=$	ر مطلق بدست آوريد．	حاصل عبارت مقابل را به كمك	r
فصل سوم 》استدلال و اثبات و هندسه＂－ه／／1 نمره				
－／ 6	تابلو فرش كوچكتر ه／ا در 1	حرار دارد．اگر نسبت تشابه آنها $\frac{1}{\mu}$ باشد و ابیات جـر است؟	الف）دو تابلو فرش در يكى موز باشد، ابعاد تابلو فرش بزر رگتر حر	F
صفحه اول				

1	ب) با توجه به شكل ، نقطه 0 مركز دايره است. نشان دهيد دو خط مماس $\left\{\begin{array}{rl} \ldots \ldots \ldots & =\ldots \ldots \ldots \\ \ldots \ldots \ldots & =\ldots \ldots \end{array} \Rightarrow O \stackrel{A}{A} \cong O \widehat{B} M \Rightarrow \overline{B M}=\overline{A M}\right.$ حالت همنهشتى (. .	
فصل چهارم 》(توان و ريشه区 - r		
-/ra \cdot / a		D
$\text { - } / \mathrm{Va}$ \cdot / a	الف) حاصل عبارت مقابل را به ساده ترين شكل بنويديسيد. $\Delta \sqrt[\mu]{\mu}-\sqrt[\mu]{\Delta F^{F}}=$ $\frac{\mu}{\sqrt{\mu}}=$ ب) مخرج كسر مقابل را كويا كنيد.	9
فصل پنجم »عبارت جبرى" - ب		
-/va $\cdot / \pi \Delta$		V
\cdot / a \cdot / a	الف) تساوى را به كمك اتحاد كامل كنيد. $1 \circ \wedge \times 9 \mu=(+)(-\quad)$ $x^{\mu}-\varsigma x+\wedge=\quad \text { ب) عبارت مقابل را تجزيه كنيد. }$	\wedge
1	نامعادله زير را حل كنيد، سپّ مجموعه جواب آن را روى محور نشان دهيد. $\frac{x-\mu}{\omega} \leq \frac{x}{\mu}$	9
صفحه دوم		

تاريخ امتحان: 19 / 19 / 19 / ساعت شروع: *: : ال اصبح هماهنگَ استانى خرداد ماه پاٍ		تينا وزارت آموزش و هيورش اداره كل آموزش و هرور ش استان قم اداره آموزش و پرورش ناحيه/شهر ستان/ منظقه درس : رياضى	\qquad إنوادگى: \qquad آوزش شكا: \qquad آرير دانش آموز:	
بارم		تعداد 19 سؤال در ¢ ${ }^{\text {¢ }}$		
-/Kם	$\left[\begin{array}{l}1 \\ \Delta\end{array}\right]\left(d \square \quad\left[\begin{array}{c}1 \\ -1\end{array}\right]\left(c \square \quad\left[\begin{array}{c}-1 \\ -1\end{array}\right]\left(b \square \quad\left[\begin{array}{c}-1 \\ -\Delta\end{array}\right](a \square\right.\right.\right.$ ب) معادله خط هاى زير را رسم كنيد. 1) $y=\mu x-1$ r) $x=-r$			
-/6	 ب)			
1	$\left\{\begin{array}{c}x+y=\mu \\ \mu x-\mu y=1\end{array}\right.$		دستگاه مقابل را حل كنيد	ir
-/6	$\begin{aligned} & \frac{\Delta x+\varepsilon}{\mu x-q} \\ & \frac{\mu x-\mu}{x+y}+\frac{x-\mu}{x+y}= \\ & \frac{\mu x-1 \circ}{\Delta x^{\mu}} \div \frac{x^{\mu}-\mu \Delta}{1 \circ x^{\mu}} \end{aligned}$	،عبارت گوياى مقابل تعريف نشده است؟ ساده ترين صورت بنويسيد.	الف) به ازاى چهه مقاديرى از ب) حاصل عبار تهاى زير را بـ	ir

Irs) 1

$$
\begin{aligned}
& A-B=\left\{\omega_{9} 0\right\} \\
& \begin{array}{l}
A \cap B) \cap C=\{r\} \\
1, r \in B
\end{array} \quad\{-r\} \subseteq C
\end{aligned}
$$

$\frac{1}{\lambda}<b<r$

$$
\sqrt{(r-\sqrt{\omega})^{r}}=|r-\sqrt{\omega}|=\sqrt{\omega} r
$$

(i) F

$$
\begin{aligned}
& 110 \times r=r, 0 \\
& 1 \times r=r
\end{aligned}
$$

- Enl "enの

$$
\begin{aligned}
& 01000001 V=1, V \times 10^{-4} \\
& \Delta \sqrt[r]{r}-\sqrt[r]{r v \times r}=\sqrt[r]{a} \sqrt[r]{r} \ldots r \sqrt[r]{r}=r \sqrt[r]{r} \text { (iv) 4 } \\
& \frac{r}{\sqrt{\mu}} \times \sqrt{\mu}=\frac{\mu \sqrt{\mu}}{\mu} \\
& (x+\cdots)^{r}=x^{r}+4 x+4 \\
& a+r=b-r \Rightarrow a+r+r=b \Rightarrow a+v=b \\
& \Rightarrow a<b \\
& 10 \wedge \times 9 r=(100+1)(100-\lambda)=100^{r}-\Lambda^{r}(\sin \cdot 1 \\
& x^{r}-4 x+1=(x-F)(x-r) \\
& \frac{x-r}{\omega} \leqslant \frac{x}{r} \Rightarrow r_{x}-4 \leqslant \omega x \Rightarrow \frac{-4}{r} \leqslant \frac{r_{x}}{r} \\
& \Rightarrow \quad-t \leqslant x
\end{aligned}
$$

a) $\left[\begin{array}{l}-1 \\ -\infty\end{array}\right]$

$$
\text { 1) } y=r_{x}-1 \quad \frac{x}{y} \frac{1}{y-1} \frac{1}{r}
$$

$$
\text { q, } x=-\psi^{4}
$$

$$
y=-r x+0
$$

(1) II

$$
\Rightarrow \quad \underline{\underline{q}}=-r \Rightarrow y=-Y x+b \xrightarrow{\left[\begin{array}{l}
0 \\
r
\end{array}\right]}
$$

$$
\begin{aligned}
& b=r \Rightarrow y=-r x+r \\
& r y+1 x=-10 \Rightarrow r y=-1 x-10 \Rightarrow y=-r_{x-\omega}(a-1-1
\end{aligned}
$$

$$
\begin{aligned}
& -\infty=-r x-1+r \neq r_{4}+r=0 \\
& \xrightarrow{\text { b) }\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]}-1=-r x-1+r=r+r=\omega \\
& \begin{array}{l}
\text { c) }\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\text { d) }\left[\begin{array}{c}
1 \\
0
\end{array}\right]
\end{array} \\
& \omega=-r \times 1+r=-r+r=-1 \quad \therefore \begin{array}{r}
0, ~ \\
\sim
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x+y=r \Rightarrow 1+y=r \quad \Rightarrow \quad y=1 \\
& r-9=0 \quad \Rightarrow \quad x=r \\
& \frac{\mu x-r}{x+y}+\frac{x-r}{x+y}=\frac{\beta x-\infty}{x+y} \\
& \frac{\mu x-10}{\Delta x^{r}} \div \frac{x^{r}-r \omega}{10 x^{r}}=\frac{P(x-\Delta)}{\Delta x^{r}} \times \frac{\gamma_{0} x^{r}}{(x-\omega)(x+\omega)} \\
& =\frac{r}{x+\infty}
\end{aligned}
$$

$$
\begin{aligned}
& -x^{r}-x+v \left\lvert\, \frac{x+r}{x-r}\right. \\
& -r_{x}+V \\
& \frac{+r_{2}+4}{1 \mu} \\
& \text { (cos } 11 \text { a } \\
& V=\frac{K}{\mu} \operatorname{vr}^{\mu}=\frac{K}{\mu} r \times \mu^{\mu}=\mu \varphi \pi \mathrm{cm}^{\mu} \\
& S=k \pi r^{r}=K \pi \times r^{r}=\mu 4 \pi \mathrm{~cm}^{r} \\
& \text { bis }(b \text { yer }(\dot{c}) \text {. U } \\
& S=\frac{1}{r} S h=\frac{1}{r^{r}} \times \omega \times 9 \times 10=100 \mathrm{~cm}^{r}
\end{aligned}
$$

